

AQA Computer Science A-Level
4.3.4 Searching algorithms

Advanced Notes

www.pmt.education

Specification:

4.3.4.1 Linear search:

Know and be able to trace and analyse the complexity of the linear
search algorithm. Time complexity is O(n).

4.3.4.2 Binary search

Know and be able to trace and analyse the time complexity of the
binary search algorithm. Time complexity is O(log n).

4.3.4.3 Binary tree search

Be able to trace and analyse the time complexity of the binary tree
search algorithm. Time complexity is O(log n).

www.pmt.education

Searching Algorithms

An ​algorithm​ is a set of ​instructions ​ ​which completes a
task​ in a ​finite time​ and always ​terminates​. In the case of a
searching algorithm, the task is to ​find ​the location of a
certain item in a list or to ​verify​ if the item is in the list.
There are several different searching algorithms which can
be used in varying circumstances. The three studied
below are ​linear search ​, ​binary search ​and a ​binary tree
search​. ​Hash tables​ are not searching algorithms, but
function in a similar way.

Linear Search

A linear search can be conducted on any ​unordered​ list. It
is the most simple to program, but it has a comparatively
high time complexity​, so is rarely used in the real world. It
has one loop, and thus has a​ ​t​ime complexity​ of​ O(N)​. In
this algorithm, ​each item​ in the list is compared
sequentially​ to the target.

Linear Search Example 1

Here is an array of people:

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

Where is “Oliver” in the array?
The first position of the array is checked.

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Oliver” ≠ “Dean”
Check the next position in the array.

www.pmt.education

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Oliver” ≠ “Angelina”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Oliver” ≠ “Seamus”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Oliver” = “Oliver”
Hence Oliver is found at position 3 in the array.

Linear Search Example 2

Where is “Hannah” in the array?
The first position of the array is checked.

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Dean”
Check the next position in the array.

www.pmt.education

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Angelina”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Seamus”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Oliver”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Cho”
So check the next position in the array

Position 0 1 2 3 4 5

Data Dean Angelina Seamus Oliver Cho Fred

“Hannah” ≠ “Fred”

Check the next position in the array. There are no more positions in the array, so
Hannah is not contained in the array. When correctly programmed, a linear search
algorithm should ​not result in an error ​ when trying to locate an item not in the array.

www.pmt.education

Pseudocode for a linear search algorithm could be:

LinearSearch(Target, ArrayofNames)
Boolean Found
Integer Count
Found ← FALSE
Count ← 0

Do Until Found == TRUE or Count == ArrayofNames Count

If Target == ArrayofNames(Count)
Found ← TRUE

Else
Count ← Count + 1

End If
Loop

If Found = TRUE

Output Target found at Count
Else

Output Target not found
End if

Using a For...Next loop in lieu of a Do Until loop would be
bad programming practice. The For….Next loop is an
example of ​ ​definite iteration​, whereas the Do Until loop is
an example of ​indefinite iteration​. For instance, if the
target was at the beginning of the array, the Do Until loop
would locate the item immediately and then exit the loop,
whereas a For...Next loop would still have to search
through each piece of data. This makes the Do...Until loop
quicker in this scenario (although both loops are O(N) as
big O notation looks at the worst case scenario).

www.pmt.education

Binary Search
A binary search can be used on any ​ordered​ list. If the list
is unordered, the data must be ​sorted​ by a​ ​sorting
algorithm ​. A binary search works by looking at the
midpoint ​ of a list and determining if the target is ​higher or
lower​ than the midpoint. The time complexity is ​O(logN)
because the list is ​halved​ each search.

Binary Search Example 1

Here is an array of people:

Position 0 1 2 3 4 5 6

Data George Percy William Ronald Charles Fredrick Ginevra

Where is George?

This is an unordered list, so the first step is to use a sorting algorithm. The data can be
sorted into ​ascending or descending​ order, although each will require a slightly different
code.

Position 0 1 2 3 4 5 6

Data Charles Fredrick George Ginevra Percy Ronald William

The first step is to take the middle piece of data. To find the midpoint of the data, ​add
the ​highest position​ and the ​lowest position ​ of the array being considered, and ​divide by
2​. I.e. 0 + 6 = 6, 6/2 = 3. Look at position 3 of the array.

Position 0 1 2 3 4 5 6

Data Charles Fredrick George Ginevra Percy Ronald William

“George” ≠ “Ginevra”

www.pmt.education

“George” < “Ginevra” because George is before Ginevra when in alphabetical order.
Your programming language can​ compare strings ​ to determine whether they are higher
or lower than one another.

Hence, discard all places in the array beyond “Ginevra”.

Our new array looks like this:

Position 0 1 2

Data Charles Fredrick George

To find George, we must check the middle position. 0 + 2 = 2, 2/2 = 1.

Position 0 1 2

Data Charles Fredrick George

“George” ≠ “Fredrick”
“George” > “Fredrick”
Hence, everything before “Fredrick” does not need to be checked.

Position 2

Data George

There is only one element in the array. 2 + 2 = 4, 4/2 = 2

Position 2

Data George

“George” = “George”
George is found at position 2 of the array.

www.pmt.education

Binary Search Example 2

Here is an array of names:

Position 0 1 2 3 4 5

Data Mushu Zazu Flounder Pascal Gus Baloo

Where is “Pegasus”?

The first step is to order then with a sorting algorithm.

Position 0 1 2 3 4 5

Data Baloo Flounder Gus Mushu Pascal Zazu

The first step is to find the midpoint. 0 + 5 = 5, 5/2 = 2.5, there is no position 2.5 in the
array, so an int calculation is performed on it - this removes the decimal part. Hence, we
need to check the data in position 2.

Position 0 1 2 3 4 5

Data Baloo Flounder Gus Mushu Pascal Zazu

“Pegasus” ≠ “Gus”
“Pegasus” > “Gus”, so only positions 3, 4 and 5 will be considered from now on.

Position 3 4 5

Data Mushu Pascal Zazu

To find the midpoint, 3 + 5 = 8, 8/2 = 4.

Position 3 4 5

Data Mushu Pascal Zazu

“Pegasus” ≠ “Pascal”

www.pmt.education

“Pegasus” > “Pascal”
Positions 3 and 4 are disregarded.

Position 5

Data Zazu

There is only one piece of data in the array. 5 + 5 = 10, 10/2 = 5

Position 5

Data Zazu

“Pegasus” ≠ “Zazu”
“Pegasus” > “Zazu”
There is no more data to check; Pegasus isn’t in the array.

www.pmt.education

A binary search can be conducted in many different ways. Here is pseudocode for one
solution:

BinarySearch(Target, ArrayofNames)
Integer TopPointer
Integer BottomPointer
Integer Midpoint
Boolean Found

Found ← FALSE
BottomPointer ← 0
TopPointer ← ArrayofNames Count - 1

Do Until Found = TRUE or TopPointer < BottomPointer

Midpoint = int mid TopPointer, BottomPointer
If ArrayofNames(Midpoint) = Target

Found = TRUE
ElseIf ArrayofNames(Midpoint) > Target

TopPointer = Midpoint - 1
ElseIf ArrayofNames(Midpoint) < Target

BottomPointer = Midpoint + 1
End If

Loop

If Found = TRUE
Output Target found at Midpoint

Else
Output Target not found

End if

A binary search can also be completed through ​recursion ​.

www.pmt.education

Binary Tree Search

A binary tree search is the same as a binary search,
except it is conducted on a​ ​binary tree​. A tree is an
acyclic​, ​connected ​graph ​, and a binary tree is a ​rooted
ordered tree ​in which ​each node has 0, 1 or 2 children ​.
Like a binary search, a binary tree search has a time
complexity of ​O(logN)​.

Binary Tree Search Example

Here is a list of names:
Georg, René, Ada, Alan, Blaise, Ptolemy, Tim.

Does the list contain “Alan”?

The first stage in a binary tree search is to put the list into
a ​binary tree ​.

A binary tree search starts at the root.

www.pmt.education

“Alan” ≠ “Georg”
“Alan” < “Georg”
Therefore only items ​left​ of the root will be considered further.

“Alan” ≠ “Ada”
“Alan” > “Ada”
Hence only nodes ​right​ of Ada will be further considered.

www.pmt.education

“Alan” = “Alan”
Alan is in the tree.

www.pmt.education

